Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(1): e0244710, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33400707

RESUMO

Memory impairment has been associated with chronic Chagas disease (CD), a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. In degenerative diseases, memory loss has been associated with increased oxidative stress, revealed as enhanced lipid peroxidation, in the cerebral cortex. Benznidazole (Bz), a trypanocidal drug efficient to reduce blood parasite load in the acute and chronic phases of infection, showed controversial effects on heart disease progression, the main clinical manifestation of CD. Here, we evaluated whether C57BL/6 mice infected with the Colombian type I T. cruzi strain present memory deficit assessed by (i) the novel object recognition task, (ii) the open field test and (iii) the aversive shock evoked test, at 120 days post infection (dpi). Next, we tested the effects of Bz therapy (25mg/Kg/day, for 30 consecutive days) on memory evocation, and tried to establish a relation between memory loss, parasite load and oxidative stress in the central nervous system (CNS). At 120 dpi, T. cruzi-infected mice showed memory impairment, compared with age-matched non-infected controls. Bz therapy (from 120 to 150 dpi) hampered the progression of habituation and aversive memory loss and, moreover, reversed memory impairment in object recognition. In vehicle-administered infected mice, neuroinflammation was absent albeit rare perivascular mononuclear cells were found in meninges and choroid plexus. Bz therapy abrogated the infiltration of the CNS by inflammatory cells, and reduced parasite load in hippocampus and cerebral cortex. At 120 and 150 dpi, lipid peroxidation was increased in the hippocampus and cortex tissue extracts. Notably, Bz therapy reduced levels of lipid peroxidation in the cerebral cortex. Therefore, in experimental chronic T. cruzi infection Bz therapy improved memory loss, in association with reduction of parasite load and oxidative stress in the CNS, providing a new perspective to improve the quality of life of Chagas disease patients.


Assuntos
Doença de Chagas/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Nitroimidazóis/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Animais , Doença de Chagas/complicações , Doença de Chagas/metabolismo , Doença de Chagas/fisiopatologia , Doença Crônica , Cognição/efeitos dos fármacos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Feminino , Camundongos Endogâmicos C57BL , Carga Parasitária
2.
Front Immunol ; 11: 306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194558

RESUMO

CCL3, a member of the CC-chemokine family, has been associated with macrophage recruitment to heart tissue and parasite control in the acute infection of mouse with Trypanosoma cruzi, the causative agent of Chagas disease. Here, we approached the participation of CCL3 in chronic chagasic cardiomyopathy (CCC), the main clinical form of Chagas disease. We induced CCC in C57BL/6 (ccl3+/+) and CCL3-deficient (ccl3-/-) mice by infection with the Colombian Type I strain. In ccl3+/+ mice, high levels of CCL3 mRNA and protein were detected in the heart tissue during the acute and chronic infection. Survival was not affected by CCL3 deficiency. In comparison with ccl3+/+, chronically infected ccl3-/- mice presented reduced cardiac parasitism and inflammation due to CD8+ cells and macrophages. Leukocytosis was decreased in infected ccl3-/- mice, paralleling the accumulation of CD8+ T cells devoid of activated CCR5+ LFA-1+ cells in the spleen. Further, T. cruzi-infected ccl3-/-mice presented reduced frequency of interferon-gamma (IFNγ)+ cells and numbers of parasite-specific IFNγ-producing cells, while the T. cruzi antigen-specific cytotoxic activity was increased. Stimulation of CCL3-deficient macrophages with IFNγ improved parasite control, in a milieu with reduced nitric oxide (NOx) and tumor necrosis factor (TNF), but similar interleukin-10 (IL-10), concentrations. In comparison with chronically T. cruzi-infected ccl3+/+ counterparts, ccl3-/- mice did not show enlarged heart, loss of left ventricular ejection fraction, QTc prolongation and elevated CK-MB activity. Compared with ccl3+/+, infected ccl3-/- mice showed reduced concentrations of TNF, while IL-10 levels were not affected, in the heart milieu. In spleen of ccl3+/+ NI controls, most of the CD8+ T-cells expressing the CCL3 receptors CCR1 or CCR5 were IL-10+, while in infected mice these cells were mainly TNF+. Lastly, selective blockage of CCR1/CCR5 (Met-RANTES therapy) in chronically infected ccl3+/+ mice reversed pivotal electrical abnormalities (bradycardia, prolonged PR, and QTc interval), in correlation with reduced TNF and, mainly, CCL3 levels in the heart tissue. Therefore, in the chronic T. cruzi infection CCL3 takes part in parasite persistence and contributes to form a CD8+ T-cell and macrophage-enriched cardiac inflammation. Further, increased levels of CCL3 create a scenario with abundant IFNγ and TNF, associated with cardiomyocyte injury, heart dysfunction and QTc prolongation, biomarkers of severity of Chagas' heart disease.


Assuntos
Cardiomiopatia Chagásica/fisiopatologia , Quimiocina CCL3/fisiologia , Interferon gama/fisiologia , Macrófagos Peritoneais/parasitologia , Parasitemia/fisiopatologia , Trypanosoma cruzi/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/patologia , Quimiocina CCL3/deficiência , Quimiocina CCL3/farmacologia , Quimiocina CCL5/farmacologia , Quimiocina CCL5/uso terapêutico , Quimiotaxia de Leucócito/efeitos dos fármacos , Citocinas/biossíntese , Citocinas/genética , Citocinas/farmacologia , Eletrocardiografia/efeitos dos fármacos , Feminino , Interferon gama/farmacologia , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocardite/etiologia , Miocardite/patologia , Miocardite/fisiopatologia , RNA Mensageiro/biossíntese , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/biossíntese , Receptores de Quimiocinas/genética , Organismos Livres de Patógenos Específicos , Baço/imunologia , Baço/metabolismo , Volume Sistólico , Trypanosoma cruzi/isolamento & purificação , Fator de Necrose Tumoral alfa/análise
3.
Curr Drug Deliv ; 14(7): 992-1004, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28124617

RESUMO

BACKGROUND: Celecoxib (CXB) has been explored as an anti-inflammatory or chemopreventive drug for topical treatment of skin diseases and cancer. OBJECTIVE: The main aim of this work was to investigate the potential of dimethylsufoxide (DMSO) and Azone (AZ) as penetration enhancers (P.Es) for topical delivery of CXB. METHOD: The in vitro studies, drug release, skin permeability and potential cytotoxicity/genotoxicity were carried out with formulations containing or not DMSO or AZ (5% and 10%). Skin irritation in rabbits and topical anti-inflammatory activity in mice were assayed in vivo. RESULTS: Skin permeation was minimal while higher retention in stratum corneum (SC) and epidermis plus dermis was found (28.0 and 3-fold respectively) from 10.0% AZ compared to the control indicating a localized CXB effect. CXB associated to 5% or 10% DMSO has shown high drug permeation through skin with low retention. Associations of CXB with both enhancers were not cytotoxic or genotoxic, suggesting safety for cutaneous application. In vivo skin irritation assays of all formulations indicated mild irritation effects and, thus, possible use for longer periods. In vivo anti-inflammatory tests showed that ear edema could be inhibited by CXB associated with 5.0% DMSO (53.0%) or 10.0% AZ (40.0%). These inhibition values were almost 2-fold higher when compared to a commercial formula. CONCLUSION: Although DMSO- associated CXB is an efficient edema inhibitor its high skin permeation suggests risks of systemic effects, whereas association to 10% AZ may improve topical delivery of the drug with good anti-inflammatory activity and no cytotoxic/genotoxic or significant skin irritation effects.


Assuntos
Azepinas/administração & dosagem , Celecoxib/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Dimetil Sulfóxido/administração & dosagem , Absorção Cutânea/efeitos dos fármacos , Administração Cutânea , Animais , Azepinas/química , Azepinas/uso terapêutico , Celecoxib/química , Celecoxib/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Dimetil Sulfóxido/química , Dimetil Sulfóxido/uso terapêutico , Edema/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Masculino , Camundongos , Testes de Mutagenicidade , Coelhos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Pele/efeitos dos fármacos , Pele/metabolismo , Testes de Irritação da Pele , Suínos
4.
Drug Dev Ind Pharm ; 40(9): 1180-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23826859

RESUMO

OBJECTIVE: We investigated the potential effects of oleic acid (OA) and glycerol monooleate (GMO) on the skin delivery of CXB. METHODS: The influence of both OA and GMO (5.0% or 10.0%) on the in vitro skin permeability of CXB (2.0%) was evaluated using propylene glycol (PG) as a vehicle. Also the in vitro potential cytotoxicity and genotoxicity and in vivo assays (skin irritation in rabbits and topical anti-inflammatory activity by in mice) were conducted. RESULTS: As expected, the amount of CXB that permeated through the skin was minimal, but drug retention on the viable skin (epidermis plus dermis) was higher in association with treatment with 5.0% OA or GMO compared to the control treatment, meaning that there was a localized effect of CXB in the skin. No formulation presented cytotoxic or genotoxic potential, suggesting safety for cutaneous application. In vivo skin irritation assays indicated that no formulation was irritating to the skin becomes its use possible for a prolonged time. In vivo anti-inflammatory experiments indicated that both edema and protein extravasation were inhibited with a maximum % inhibition of 53.5.0% and 61.0% for 5.0 % GMO, respectively, and 48.0% and 35.5% for 5.0% OA, respectively. Such formulations were able to inhibit around twofold the percentage of ear edema in mice compared to a commercial product reference diclofenac commercial formula. CONCLUSION: There is no topical formulation currently available that contains both CXB and 5.0% GMO or OA, suggesting them as potential adjuvants that improve the skin delivery of CXB.


Assuntos
Pirazóis/administração & dosagem , Pirazóis/química , Pele/metabolismo , Sulfonamidas/administração & dosagem , Sulfonamidas/química , Administração Cutânea , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Celecoxib , Química Farmacêutica/métodos , Edema/tratamento farmacológico , Glicerídeos/química , Masculino , Camundongos , Ácido Oleico/química , Permeabilidade , Propilenoglicol/química , Coelhos , Absorção Cutânea/fisiologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...